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a b s t r a c t

Self-resonance in the atomic vibration occurs when the average wavelength of the phonon thermal vibra-
tion is equivalent or harmonic of the diameters of the atoms. It is suggested that applying pressure at
temperature corresponding to the self-resonance should effectively reduce the number of vacancies. This
theoretical prediction is tested on Niobium by measuring the magnetic susceptibility of the untreated
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and treated samples. The applied pressure–temperature treatment increased the critical temperature of
Niobium by about 30%.

© 2010 Elsevier B.V. All rights reserved.
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. Introduction

The reduction of the number of vacancy in a substance improves
he physical properties of the materials. Traditionally pressure
nd temperature treatments are employed to achieve this goal.
he optimum treatments are usually determined by try and error
ethod.
When the wavelength of the average thermal phonon vibration

s equal to or harmonic with the atomic diameter then self-
esonance occurs. It is suggested that the application of pressure
t the temperature corresponding to self-resonance should result
n the reduction of the number of vacancies. The same approach can
lso be applied to enhance diffusion. Using fundamental thermo-
ynamic relationships the equations calculating the pressure and
emperature for self-resonance are derived here.

. Calculations

The average wavelength [�̄] of the phonon frequency at a given
emperature can be calculated [1] as
¯ = h�B

kBT
(1)

here h is the Planck constant, kB is the Boltzmann constant, �B is
he bulk sound velocity and T is the temperature. The bulk sound
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velocity is calculated as

�B =
√

BT

�
=

√
VmBT

NAM
, (2)

where BT is the isothermal bulk modulus, � is the density, Vm is the
molar volume, NA is the Avogadro’s number and M is the mass of the
atom. In Eq. (2) the isothermal bulk modulus is used instead of the
adiabatic. The difference between the isothermal and the adiabatic
bulk modulus is usually under 1% which is ignored in this study.

The effect of temperature on the bulk modulus at 1 bar pressure
is calculated [2] as

B0T = Bo exp

⎡
⎣−

T∫
T=0

˛V ıdT

⎤
⎦ (3)

where Bo is the bulk modulus at zero pressure and temperature,
˛V is the volume coefficient of thermal expansion and ı is the
Anderson–Grüneisen parameter, which defined as

ı ≡
(

∂ ln BT

∂ ln V

)
P

= − 1
˛VP

(
∂ ln BT

∂T

)
P

= − 1
˛VP

BT

(
∂BT

∂T

)
P

. (4)

Assuming that the temperature and pressure effect on the vol-
ume coefficient of thermal expansion and bulk modulus is linear,

respectively then Eq. (3) can be written as

BP,T = (Bo + B′
oP)exp[−(˛o + ˛1T)ıT] (5)

where P is the pressure where B′
o is the linear term for the pres-

sure dependence of the bulk modulus, ˛o is the projected value of
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the volume coefficient of thermal expansion at zero pressure and
temperature and ˛1 is the linear term for the volume coefficient of
thermal expansion. Even though, the temperature dependence of
the coefficient below the Debye temperature is not linear [3], the
linear approximation and Eq. (5) can be used for ambient condi-
tions and at higher temperatures [4] because the introduced error
is minor.

The molar volume of the solid at the temperature of interest is
calculated by using the EoS of Garai [4], which is given as

Vm = Vo exp
[ −P

Bo + B1PP + B2PP2
+ (˛o + ˛1PP + ˛2PP2)T

+
(

1 + ˛1PP + ˛2PP2

˛o

)a

˛1T T2

]
(6)

where Vo is the molar volume at zero pressure and temperature,
B1P is a linear, B2P is a quadratic term for the pressure dependence
of the bulk modulus, ˛1P is a linear and ˛2P is a quadratic term
for the pressure dependence of the volume coefficient of thermal
expansion, ˛1T is a linear term for the temperature dependence
of the volume coefficient of thermal expansion and a is constant,
characteristic of the substance. The theoretical explanations for Eq.
(6) and the physics of the parameters are discussed in detail [4].

The atomic diameter [d] corresponding to the size of the vacancy
is approximated as

d = 3

√
Vm(T, P)

NA
. (7)

Self-resonance can occur when
n

2
�̄ = d(T, P) where n ∈N∗. (8)

If the thermodynamic parameters are available then the P–T curve
for the atomic self-vibration can be calculated by using Eqs. (1)–(8).

The vibrational motion of crystals is very complex and ideal-
ized approach is valid only for monoatomic highly symmetrical
atomic arrangement. Niobium, which satisfies this criterion, has
been selected to test the proposed hypothesis because of its impor-
tance in superconductivity.

3. Testing the theoretical predictions

The thermodynamic parameters required for Eqs. (1)–(8) are
determined by unrestricted fitting using the available experimental
data [5–7]. The 77 experiments cover the temperature and pressure
range 293–2470 K and 0–134 GPa, respectively. The determined
parameters for the Birch Murnaghan and the Garai EoSs are given
in Table 1. The P-V-T version of the isothermal Birch Murnaghan
EoS is given in ref. [8]. The temperatures for the fundamental and
the second harmonics at atmospheric pressure and at 10 GPa are
calculated by using Eqs. (1)–(8). Using atomic radius 1.46 Å for Nio-
bium [9] the temperatures for the first harmonic at atmospheric
pressure and 10 GPa are 340 and 360 K, respectively while for the
second harmonic the temperatures are 640 and 681 K.

The 1/4 in. × 0.5 mm Nb (99.95%) samples were bought from
Smart Elements. The approximately 0.1 GPa pressure was achieved
by screws in a pressure vessel. The sample under pressure was
heated up from room temperature to the targeted temperature
(640 K) in 15 h. The sample was annealed at 640 K for 8 h and cool
down to room temperature in 15 h. The sample was taken out from
the pressure vessel right before the experiment. The effectiveness

of the treatment was tested by measuring the critical temperature
of the untreated and the treated samples.

The temperature dependence of the ac susceptibility from the
treated and untreated Nb sample, performed by using a mutual
inductance technique at an applied field of H = 20 Oe and frequency
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Fig. 1. Magnetic measurement of the treated and untreated samples.

f f = 1 kHz is shown in Fig. 1. The real part, �′, reveals a large dia-
agnetic signal below 6.8 and 8.8 K marking the superconducting

ransition for the untreated and treated sample, respectively. Below
.0 and 8.0 K, �′ is flat, indicating that the superconducting transi-
ion is complete for both the untreated and the treated samples.
he critical temperature of Nb reported in the literature [10] is

ower then 6.8 K measured for untreated sample. The most likely
xplanation for the reduction of the critical temperature is the pres-
nce of iron in the Nb sample. Comparing the untreated and treated
amples it is evident that the treatment increased both the critical
emperature and the volume by about 30% (Fig. 1).

[
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4. Conclusion

It is suggested that compressing a substance at temperature cor-
responding to thermal phonon vibration with wavelength equal
to or harmonics with the atomic diameter should effectively
reduce the number of vacancies. Using conventional thermo-
dynamic relationships the equations calculating the optimum
pressure and temperature for vacancy minimization are derived.
The parameters of the P–V–T equation of state are required for the
calculations. The theoretical predictions are tested on Niobium by
measuring the critical temperature of the untreated and treated
samples. The treatment increased both the critical temperature
and the volume by about 30%. It is concluded that the pre-
sented theoretical approach can successfully be applied to calculate
the optimum pressure and temperature conditions for vacancy
minimization.
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